Linear quantile mixed models
نویسندگان
چکیده
Dependent data arise in many studies. For example, children with the same parents or living in neighboring geographic areas tend to be more alike in many characteristics than individuals chosen at random from the population at large; observations taken repeatedly on the same individual are likely to be more similar than observations from different individuals. Frequently adopted sampling designs, such as cluster, multilevel, spatial, and repeated measures (or longitudinal or panel), may induce this dependence, which , the analysis of the data needs to take into due account. In a previous publication (Geraci and Bottai, Biostatistics 2007), we proposed a conditional quantile regression model for continuous responses where a random intercept was included along with fixed-coefficient predictors to account for betweensubjects dependence in the context of longitudinal data analysis. Conditional on the random intercept, the response was assumed to follow an asymmetric Laplace distribution. The approach hinged upon the link existing between the minimization of weighted least absolute deviations, typically used in quantile regression, and the maximization of a Laplace likelihood. As a follow up to that study, here we consider an extension of those models to more complex dependence structures in the data, which are modeled by including multiple random effects in the linear conditional quantile functions. Differently from the Gibbs ∗Draft version: June 1, 2011. Copyright to this paper remains with the authors or their assignees. Users may produce this paper for their own personal use, but distributing or reposting to other electronic bulletin boards or archives, may not be done without the written consent of the authors. To cite this paper: Geraci, M. and Bottai, M. (1 June 2011). Linear Quantile Mixed Models. Unpublished manuscript.
منابع مشابه
Linear Quantile Mixed Models: The lqmm Package for Laplace Quantile Regression
Inference in quantile analysis has received considerable attention in the recent years. Linear quantile mixed models (Geraci and Bottai 2014) represent a flexible statistical tool to analyze data from sampling designs such as multilevel, spatial, panel or longitudinal, which induce some form of clustering. In this paper, I will show how to estimate conditional quantile functions with random eff...
متن کاملInference on Quantile Regression for Heteroscedastic Mixed Models
This paper develops two weighted quantile rank score tests for the significance of fixed effects in a class of mixed models with nonhomogeneous groups. One test is constructed by weighting the residuals to account for heteroscedasticity, while the other test is based on asymptotically optimal weights accounting for both heteroscedasticity and correlation. Without appropriate weights to account ...
متن کاملNonparametric Small Area Estimation via M-quantile Regression using Penalized Splines
The demand of reliable statistics for small areas, when only reduced sizes of the samples are available, has promoted the development of small area estimation methods. In particular, an approach that is now widely used is based on linear mixed models. Chambers & Tzavidis (2006) have recently proposed an approach for small area estimation that is based on M-quantile models. However, when the fun...
متن کاملDetecting Differential Expressions in GeneChip Microarray Studies: A Quantile Approach
In this article we consider testing for differentially expressed genes in GeneChip studies by modeling and analyzing the quantiles of gene expression through probe level measurements. By developing a robust rank score test for linear quantile models with a random effect, we propose a reliable test for detecting differences in certain quantiles of the intensity distributions. By using a genomewi...
متن کاملQuantile Regression Estimates for a Class of Linear and Partially Linear Errors-in-variables Models
We consider the problem of estimating quantile regression coefficients in errors-in-variables models. When the error variables for both the response and the manifest variables have a joint distribution that is spherically symmetric but is otherwise unknown, the regression quantile estimates based on orthogonal residuals are shown to be consistent and asymptotically normal. We also extend the wo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Statistics and Computing
دوره 24 شماره
صفحات -
تاریخ انتشار 2014